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Mixture Models for Financial Time Series

• A possible interpretation of mixture distributions for modeling asset
returns is that the distribution of returns depends on an (typically
unobserved) state (or regime) of the market.

• For example, expected returns as well as variances and correlations may
differ in bull and bear markets.

• Assume that there are k different states of the market.

• If the market is in state j at time t, the N × 1 vector of returns under
consideration is multivariate normal with mean µj and covariance matrix
Σj, i.e., its density is

f(rt|st = j) = φ(rt; µj, Σj) (1)

=
1

(2π)N/2
√|Σj|

exp
{
−1

2
(rt − µj)′Σ−1

j (rt − µj)
}

.
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• In (1), st ∈ {1, . . . , k} is the regime variable indicating the regime at
time t.

• At time t, the market is in state j with (conditional) probability πjt, i.e.,

Prt−1(st = j) = πjt, j = 1, . . . , k.

• Thus the model can be written

rt|It−1 ∼





Normal(µ1, Σ1) with probability π1t

Normal(µ2, Σ2) with probability π2t

· · ·
Normal(µk, Σk) with probability πkt,

(2)

where It−1 is the information set available up to time t− 1.
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• The (conditional) distribution of rt at time t is a k–component finite
normal mixture distribution, with density

ft−1(rt) =
k∑

j=1

πjtφ(rt; µj, Σj), (3)

where φ(·; µj, Σj) is the multivariate normal density given in (1).

• In (3), the πjt are the (conditional) mixing weights, and the
φ(rt; µj, Σj) are the component densities, or mixture components,
with component means µj, and component covariance matrices Σj,
j = 1, . . . , k.
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• Since this is a linear combination of normal densities, the raw moments1

can be calculated as linear combinations of normal moments.

• For example, the mean and the covariance matrix are given by

µ := Et−1(rt) =
k∑

j=1

πjtµj (4)

and

Vart−1(rt) =
k∑

j=1

πjtΣj +
k∑

j=1

πjt(µj − µ)(µj − µ)′, (5)

respectively.

• The mean (4) is just the probability–weighted average of the component
means.

1As opposed to centered moments, which are calculated around the mean. The variance is a centered
moment, for example. However, centered moments can be obtained from the raw moments. For example,
the variance (the second centered moment) can be obtained from the first and second raw moments, since
E(X − µ)2 = E(X2)− E2(X), where µ = E(X).
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• The variance formula (5) is a bit more complex.

• It can be interpreted as

“expectation of the variance (first term) + variance of the expectation
(second term)”.
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• For univariate mixtures (for ease of notation only), the variance formula
can be derived as follows.

• For univariate mixtures, the variance formula (5) becomes (dropping the
time subscript t for simplicity)

∑

j

πjσ
2
j +

∑

j

πj(µj − µ)2 =
∑

j

πjσ
2
j +

∑

j

πj(µ2
j − 2µjµ + µ2)

=
∑

j

πj(σ2
j + µ2

j)− µ2

= E(r2)− E2(r) = Var(r),

since, from the properties of the normal distribution,

E(r) =
∑

j

πjµj, E(r2) =
∑

j

πj(σ2
j + µ2

j). (6)
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• Normal mixture distributions are known to exhibit great flexibility, and
they can capture the skewness and excess kurtosis which characterizes
many financial variables.

• For example, consider the scale normal mixture, where only the variances
are component–specific, whereas the component means are all equal to
µ. This gives rise to a leptokurtic density.

• Consider example

π1 = 0.8, µ1 = µ2 = 0, σ2
1 = 1, σ2

2 = 10,

and the normal distribution with the same mean µ = 0 and variance
σ2 = 0.8 · 1 + 0.2 · 10 = 2.8.
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• A skewed density can be generated by allowing the component means to
differ.

• The typical situation where left–skewness emerges is where the
component with the smaller probability (mixing weight) has the greater
variance and the smaller mean.

• In terms of the bull/bear market interpretation of the two–component
model, this means that the bear market component (smaller mean return)
has smaller probability and a higher volatility

• Consider example

π1 = 0.8, µ1 = 1, µ2 = −1, σ2
1 = 1, σ2

2 = 10.
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• Bimodality is the result of the component means being sufficiently far
apart, relative to the magnitude of the variances.
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Example

• For illustration, let us consider the simplest case.

• This is a univariate iid mixture model, where the conditional mixing
weights (regime probabilities) are constant over time:

πjt = λj, j = 1, . . . , k, for all t. (7)

• The parameter vector to be estimated is θ = (λ1, . . . , λk−1, µ1, . . . , µk, σ
2
1, . . . , σ

2
k).

• Mixture models are typically estimated by either maximum likelihood or
Bayesian approaches.

• The log–likelihood function of the iid mixture model is

log L =
T∑

t=1

log





k∑

j=1

λjφ(rt; µj, σ
2
j )



 . (8)
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• The log–likelihood (8) can conveniently be maximized by means of
the Expectation–Maximization (EM) algorithm, which can also be
constructed for more complex mixture models.2

• However, mixture likelihoods often have more than a single local
maximum

• There are further subtleties of likelihood inference in mixture models,
which are discussed in the literature.3

2E.g., for Markov–switching mixtures, as birefly discussed below.
3E.g., G. J. McLachlan and T. Krishnan (2008): The EM algorithm and extensions, Wiley; McLachlan

and Peel (2000): Finite Mixture Models, Wiley.
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Example: European Stock Market Returns

• Consider mixture models for the major European stock markets.

Table 1: Likelihood–based goodness–of–fit
k = 2 k = 3 k = 4

log L BIC log L BIC log L BIC

CAC 40 −8451.7 16946 −8439.9 16948 −8438.5 16971

DAX 30 −8628.4 17299 −8602.4 17273 −8599.8 17293

FTSE 100 −7313.7 14670 −7295.3 14659 −7294.7 14683

Table 2: Two–component normal mixture parameter estimates for European

stock markets
bλ1 bµ1 bσ2

1
bλ2 bµ2 bσ2

2

CAC 40 0.8396
(0.0199)

0.0679
(0.0190)

1.0310
(0.0462)

0.1604
(0.0199)

−0.2023
(0.1102)

7.0192
(0.6372)

DAX 30 0.8221
(0.0205)

0.0898
(0.0195)

1.0253
(0.0500)

0.1779
(0.0205)

−0.2851
(0.1085)

7.5843
(0.6527)

FTSE 100 0.8357
(0.0174)

0.0542
(0.0145)

0.6120
(0.0268)

0.1643
(0.0174)

−0.0944
(0.0880)

4.9196
(0.4118)
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Table 3: Three–component normal mixture parameter estimates for
European stock markets

bλ1 bµ1 bσ2
1

bλ2 bµ2 bσ2
2

bλ3 bµ3 bσ2
3

CAC 40 0.672
(0.0842)

0.098
(0.0257)

0.829
(0.0897)

0.290
(0.0726)

−0.144
(0.1035)

3.133
(0.7571)

0.037 0.003
(0.4205)

13.931
(3.8774)

DAX 30 0.703
(0.0495)

0.046
(0.0333)

1.509
(0.1383)

0.187
(0.0563)

0.154
(0.0446)

0.239
(0.0848)

0.109 −0.354
(0.1608)

9.913
(1.1378)

FTSE 100 0.662
(0.0596)

0.060
(0.0182)

0.480
(0.0407)

0.300
(0.0528)

−0.008
(0.0579)

2.034
(0.3675)

0.036 −0.213
(0.3065)

10.580
(2.4531)

• BIC = −2 × log L + (3k − 1) × log T , where 3k − 1 is the number of
parameters of a mixture model with k components. Bold entries indicate
the best model according to BIC.

• The cdf of the normal mixture is calculated as

F (rt; θ) =
k∑

j=1

λjΦ
(

rt − µj

σj

)
, (9)

where Φ is the standard normal cdf.
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• The sequence (9) should be uniformly distributed over the unit interval,
and then

z = Φ−1




k∑

j=1

λjΦ
(

rt − µj

σj

)
 (10)

should have a standard normal distribution, where Φ−1 denotes the
inverse standard normal cdf.
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Multivariate Mixture models

• In a multivariate framework, the mixture approach is also able to account
for regime–specific dependence structures (correlation matrices) in a
natural way, while still appealing to correlation matrices in the context
of (conditionally) normally distributed returns.

• For example, it is often argued that stock returns are more highly
correlated during high–volatility periods, which are often associated with
market downturns, i.e., bear markets.

• However, it is in times of adverse market conditions that the benefits
from diversification are most urgently needed.
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Reminder: Portfolio Diversification

• Suppose we have N risky assets with returns ri, i = 1, . . . , n.

• Let the mean and the covariance matrix of the returns be denoted by µ
and Σ, i.e.,

µ =




E(r1)
E(r2)

...
E(rN)


 , Σ =




Var(r1) Cov(r1, r2) · · · Cov(r1, rN)
Cov(r1, r2) Var(r2) · · · Cov(r2, rN)

... ... . . . ...
Cov(r1, rN) Cov(r2, rN) · · · Var(rN)


 .

• Then, for a vector of portfolio weights, w, the mean and the variance of
the portfolio return, rp, are given by

µp = w′µ =
N∑

i=1

wiE(ri),

σ2
p = w′Σw =

N∑

i=1

w2
i Var(ri) + 2

N∑

j=1

∑

i<j

wiwjCov(ri, rj).
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• Now suppose (common correlation model)

Var(ri) = σ2, i = 1, . . . , N,

Corr(ri, rj) = ρ i, j = 1, . . . , N, i 6= j,

and consider equally weighted portfolio, i.e.,

wi =
1
N

, i = 1, . . . , N.

• Then the portfolio variance

σ2
p =

N∑

i=1

w2
i Var(ri) + 2

N∑

j=1

∑

i<j

wiwj Cov(ri, rj)︸ ︷︷ ︸
=σ2ρ

=
σ2

N
+

N(N − 1)σ2ρ

N2

= σ2

(
1− ρ

N
+ ρ

)
(11)

≈ ρσ2 for large N (many assets). (12)
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Digression

• Question: What if ρ in (12) is negative?

• Answer: This cannot be. It can be shown that the common correlation
coefficient of N assets has to satisfy

− 1
N − 1

< ρ < 1, (13)

so that the expression in brackets in (11) will always be positive.

• As noted by Paul A. Samuelson,4 this is rather plausible intuitively, since
it shows that

“although there is no limit on the degree to which all investments can
be positively intercorrelated, it is impossible for all to be strongly

negatively correlated.”

4Samuelson (1967): General Proof that Diversification Pays, Journal of Financial and Quantitative
Analysis, 2, 1–13.
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Modeling the (conditional) mixing weights

• The independent mixture model often fits the unconditional return
distribution well.

• It does not capture the dynamic properties of asset returns, however,
such as volatility clustering.

• Economically, this means that we expect the regimes to be persistent
(and hence predictable).

• That is, if we are in a bull market currently, the probability of being in a
bull market in the next period will be larger than if the current regime
were a bear market.

• In this framework, volatility clustering is generated by the tendency
of high–volatility regimes being followed by high–volatility regimes and
low–volatility–regimes being followed by low–volatility regimes.
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Markov–switching Models

• Markov–switching models have become very popular in economics and
finance since Hamilton (1989).5

• In this model, it is assumed that the probability of being in regime j
at time t depends on the regime at time t − 1 via the time–invariant
transition probabilities pij, defined by

pij := Pr(st = j|st−1 = i), j = 1, . . . , k,

where

pik = 1−
k−1∑

j=1

pij, i = 1, . . . , k.

5A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle,”
Econometrica , March 1989.
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• Collect the transition probabilities in the k × k transition matrix P ,

P =




p11 p21 · · · pk1

p12 p22 · · · pk2
... ... · · · ...

p1k p2k · · · pkk


 .

• If we are in regime j at time t, we anticipate that regime j will continue
with probability pjj.

• Thus, if regimes are persistent, this will be reflected in rather large
diagonal elements of the transition matrix P , which can also be
characterized as the “staying probabilities”.

25



Basic Properties of the Mixing Process

• Assume that we are given a vector of regime probabilities at time t,

πt := [π1t, π2t, . . . , πkt]′, (14)

where, as before,

πjt = Prt−1(st = j), j = 1, . . . , k.

• Recall the law of total probability: Let A1, . . . , An be a partition of the
sample space, i.e., Ai ∩Aj = ∅ for i 6= j, and Pr(

⋃
i Ai) = 1, then

Pr(B) =
∑

i

Pr(Ai) Pr(B|Ai).
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• Using this, and given the information in (14), the probability of being in
state j at time t + 1 is

Prt−1(st+1 = j) = πj,t+1 (15)

=
k∑

i=1

Prt−1(st = i)× Pr(st+1 = j|st = i) (16)

=
k∑

i=1

πitpij, j = 1, . . . , k. (17)

In terms of the transition matrix,

πt+1 = Pπt.

Iterating this, we get multi–step–ahead forecasts,

πt+τ = P τπt.

• Thus, the τ–step transition probabilities are given by the respective
elements of P τ .
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• That is, the probability that an observation from Regime i will be followed
τ periods later by an observation from Regime j is given by the element
in the jth row and ith column of the matrix P τ .

28



• What happens if the forecast horizon becomes large, i.e., τ →∞?

• Under rather general conditions (usually satisfied in practice),

π∞ := lim
τ→∞

P τπt (18)

exists and is independent of the initial probability vector πt.

• Then the values of π∞ = [π1,∞, π2,∞ . . . , πk,∞]′ are called the limiting,
or unconditional, or log–run regime probabilities.

• These probabilities reflect the relative frequency of the regimes over
longer time horizons.

• The convergence in (18) is due to the fact that

P∞ := lim
τ→∞

P τ = [π∞, . . . , π∞] = π∞1′k,

where
1k = [1, 1, . . . , 1︸ ︷︷ ︸

k times

]′.
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• This shows that we also have

Pπ∞ = π∞, (19)

which shows that π∞ is the stationary distribution of the chain.

• The unconditional distribution of rt is then a k–component normal
mixture distribution with weights πj,∞, j = 1, . . . , k, i.e.,

f(rr) =
k∑

j=1

πj,∞
(2π)N/2

√|Σj|
exp

{
−1

2
(rt − µj)′Σ−1

j (rt − µj)
}

. (20)
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• Example: Consider the two–state Markov chain with transition matrix

P =
[

p11 1− p22

1− p11 p22

]
. (21)

Then (15) becomes

π1,t+τ = p11π1,t+τ−1 + p21π2,t+τ−1

= p11π1,t+τ−1 + (1− p22)(1− π1t)

= (p11 + p22 − 1)π1,t+τ−1 + (1− p22)

= (p11 + p22 − 1)2π1,t+τ−2 + (p11 + p22 − 1)(1− p22) + (1− p22)
...

= (p11 + p22 − 1)τπ1t + (1− p22)
τ−1∑

i=1

(p11 + p22 − 1)i

=
1− p22

2− p11 − p22
+ δτ

(
π1t − 1− p22

2− p11 − p22

)

= π1,∞ + δτ(π1t − π1,∞),

31



where
δ := p11 + p22 − 1 (22)

measures the persistence of the regimes, and

π1,∞ = lim
τ→∞

π1,t+τ =
1− p22

2− p11 − p22
. (23)

Similarly,
π2,t+τ = π2,∞ + δτ (π2t − π2,∞) , (24)

where

π2,∞ = 1− π1,∞ =
1− p11

2− p11 − p22
. (25)

• The same argument can be made directly for the τ–step transition
probabilities in P τ .

• Let p
(τ)
ij = Pr(∆t+τ = j|∆t = i). Then PP τ−1 = P τ , i.e.,

[
p11 1− p22

1− p11 p22

] [
p
(τ−1)
11 1− p

(τ−1)
22

1− p
(τ−1)
11 p

(τ−1)
22

]
=

[
p
(τ)
11 1− p

(τ)
22

1− p
(τ)
11 p

(τ)
22

]
,
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or, written explicitly for the first element,

p11 · p(τ−1)
11 + (1− p22)(1− p

(τ−1)
11 ) = p

(τ)
11

(1− p22) + δp
(τ−1)
11 = p

(τ)
11 . (26)

• Solving (26) recursively as before, we get, with p
(1)
11 = p11

p
(τ)
11 = (1− p22) + δp

(τ−1)
11 = (1− p22) + δ(1− p22) + δ2p

(τ−2)
11

· · ·

= (1− p22)
τ−2∑

i=0

δi + δτ−ip11 = (1− p22)
1− δτ−1

1− δ
+ δτ−ip11

= π1,∞ + δτ−1

(
p11 − 1− p22

1− δ

)
= π1,∞ + δτ−1δ(1− p11)

1− δ

= π1,∞ + δτ 1− p11

2− p11 − p22
= π1,∞ + δτπ2,∞.
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• Similar calculations can be done for p
(τ)
22 , and it follows that P τ containing

the τ–step regime probabilities is given by

P τ =
[

π1,∞ + δτπ2,∞ (1− δτ)π1,∞
(1− δτ)π2,∞ π2,∞ + δτπ1,∞

]
(27)

=
[

π1,∞ π1,∞
π2,∞ π2,∞

]
+ δτ

[
π2,∞ −π1,∞
−π2,∞ π1,∞

]
,

so

lim
τ→∞

P τ = P∞ =
[

π1,∞ π1,∞
π2,∞ π2,∞

]
= [π∞, π∞], (28)

and the speed of convergence is determined by the magnitude of δ.
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Expected Regime Durations

• The expected duration is also often of interest.

• That is, how many periods, on average, will Regime stay in Regime j?

• Once we are in Regime j, the duration Dj ≥ 1 is geometrically distributed
with probability pjj, i.e.,

Pr(Dj = d) = pd−1
jj (1− pjj), d ≥ 1,

and so, once we are in regime j, we expect it to last for

E(Dj) =
1

1− pjj
periods,
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since

E(Dj) =
∞∑

d=1

dpd−1
jj (1− pjj) =

∞∑

d=0

(d + 1)pd
jj(1− pjj)

= pjj

∞∑

d=0

dpd−1
jj (1− pjj) + (1− pjj)

∞∑

d=0

pd
jj

= pjj

∞∑

d=1

dpd−1
jj (1− pjj) + 1

= pjjE(Dj) + 1.
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Properties of the Return Process

• We focus on the univariate situation.

• The unconditional distribution of a return generated by a k–regime
Markov–switching process of the form discussed so far, i.e.,

rt = µst + σstηt, ηt
iid∼ N(0, 1),

is a k–component finite normal mixture with mixing weights
π1,∞, π2,∞, . . . , πk,∞.

• However, due to the regime–persistence, the process also captures the
volatility clustering in the series.

• The dependence properties of the Markov chain {st} are transferred to
those of the returns.

• To illustrate, consider a generalization of the law of total probability.
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• The law of total probability is as follows: Let A1, . . . , An be a partition
of the sample space, i.e., Ai∩Aj = ∅ for i 6= j, and Pr(

⋃
i Ai) = 1, then

Pr(B) =
∑

i

Pr(Ai) Pr(B|Ai).

• The generalization to conditional expectations: For random variable X,

E(X) =
n∑

i=1

Pr(Ai)E(X|Ai). (29)

• Hence

E(rtrt−τ) =
k∑

i=1

k∑

j=1

Pr(st−τ = i ∩ st = j)E(rtrt−τ |st−τ = i ∩ st = j)

=
k∑

i=1

k∑

j=1

πi,∞p
(τ)
ij µiµj, (30)
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since Pr(st−τ = i ∩ st = j) = Pr(st−τ = i)Pr(st = j|st−τ = i) =
πi,∞p

(τ)
ij .

• For the two–regime model, inserting the expressions in (27) for the
τ–step probabilities, (30) yields after a few calculations

Cov(rt, rt−τ) = E(rtrt−τ)− E2(rt) = π1,∞π2,∞δτ(µ1 − µ2)2.

• For the squares, similar calculations lead to

Cov(r2
t , r

2
t−τ), = π1,∞π2,∞δτ(σ2

1 + µ2
1 − σ2

2 − µ2
2)

2,

respectively.

• Intuitively, if regimes are persistent, then high–return and low–volatility
regimes (bull markets) tend to be followed by high–return and low–
volatility regimes, respectively.

39



Inference about Market Regimes and the Likelihood
Function

• As the market regimes are not observable, we can only use observed
returns to make probability statements about the market’s past, current,
or future regimes.

• Such probabilities are also required for calculation of the likelihood
function.

• Algorithms for calculating such probabilities have been developed.6

• Let zjt|t−1 be our probability inference that we are in regime j at time
t, given information up to time t− 1.

6See Hamilton (1994): Time Series Analysis, Chapter 22.
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• Then the conditional density of rt, given the information up to time
t− 1, is

f(rt|It−1) =
k∑

j=1

zjt|t−1f(rt|st = j),

and the log–likelihood for a sample of size T

log L(θ) =
T∑

t=1

log f(rt|It−1),

which can be maximized by means of the EM algorithm.
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Illustration: Asymmetric Correlations in Bull and Bear
Markets

• In classical portfolio theory, we are interested in the first two moments
of the (portfolio) return distribution, i.e., mean and variance.

• In this framework, correlations between assets are of predominant
interest, because the strength of the correlations determines the degree
of risk (variance) reduction that can be achieved by efficient portfolio
diversification.

• Simple correlation estimates may be misleading, however, due to
asymmetric dependence structures.

• This refers to the observation that, for example, stock returns are more
dependent in bear markets (market downturns) than in bull markets.

• Therefore, diversification might fail when the benefits from diversification
are most urgently needed.
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Exceedance correlations

• A popular tool to describe this asymmetric dependence structure are the
exceedance correlations of Longin and Solnik (2001).7

• For a given threshold θ, the exceedance correlation between (demeaned)
returns r1 and r2 is given by

ρ(θ) =

{
Corr(x, y|x > θ, y > θ) for θ ≥ 0
Corr(x, y|x < θ, y < θ) for θ ≤ 0

(31)

• Let us consider monthly returns of MSCI stock market indices for the US
and Germany from January 1970 to June 2008.

7Extreme Correlation of International Equity Markets. Journal of Finance 56, 649-676.
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Table 4: Parameter Estimates for three–regime Markov–switching model

(rt = (rt,US, rt,Ger))

Regime 1 Regime 2 Regime 3
mean return [0.874, 1.024] [3.479, 2.593] [−1.553,−1.528]
std. deviation [3.091, 3.693] [4.482, 5.810] [5.593, 8.338]

correlation 0.466 −0.068 0.798
stationary prob. 0.583 0.209 0.208

• transition matrix

P̂ =




0.940 0.168 0.000
0.038 0.729 0.165
0.022 0.103 0.835


 (32)

• Regime 1: “business as usual”

• Regime 2: bull market

• Regime 3: bear market
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Observation switching

• Use predetermined variables x1t, . . . , xpt to model the mixing weights.

• For example, in a two–component mixture, model the weight of the first
component in a logistic fashion via

π1t =
exp{γ0 + γ1x1t + · · ·+ γpxpt}

1 + exp{γ0 + γ1x1t + · · ·+ γpxpt}. (33)

• The choice of the predetermined variables can be based on economic
arguments or model (forecasting) performance, depending on the specific
application.

• For example, Bauwens et al. (2006) consider a specification where

π1t =
exp{γ0 + γ1ε

2
t−1}

1 + exp{γ0 + γ1ε2t−1}
, (34)

where εt = rt − Et−1(rt) is the unexpected shock at time t.
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• Then γ1 > 0 implies that

π1t → 1 as ε2t−1 becomes large. (35)

• If the first component has lower volatility, this means that “large shocks
have the effect of ‘relieving pressure’ by reducing the probability of a
large shock in the next period.”
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